
A fixed point approach to the stability of
some functional equation connected with
additive and quadratic mappings

Marcin Adam
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1. Introduction

Let E1 and E2 be real linear spaces. We recall some basic definitions. A map
A : E1 → E2 is said to be additive iff it satisfies the Cauchy functional equation

A(x+ y) = A(x) + A(y), x, y ∈ E1.

A map Q : E1 → E2 is said to be quadratic iff it satisfies the following functional
equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y), x, y ∈ E1.

In the theory of functional equations the problem of the stability has its origin
in the following question, posed by S. Ulam [33] in 1940, concerning the stability of
group homomorphisms:

Let G be a group and let G1 be a metric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0 such that if a mapping h : G → G1 satisfies the inequality

d
(

h(xy), h(x)h(y)
)

< δ for all x, y ∈ G,
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then there exists a homomorphism H : G → G1 with

d
(

h(x),H(x)
)

< ε for all x ∈ G?

In the next year, D.H. Hyers [18] gave a partial affirmative answer to the question
of Ulam in the context of Banach spaces. That was the first significant breakthrough
and a step toward more solutions in this area. Since then, a large number of papers
have been published in connection with various generalizations of Ulam’s problem and
Hyers’ theorem. Th.M. Rassias in [27] (see also [2]), G.L. Forti in [14] and Z. Gajda in
[16] considered the stability problem with unbounded Cauchy differences. The above
results can be partially summarized in the following theorem:

Theorem 1.1. Let X and Y be a real normed space and a real Banach space, respec-
tively, and let p 6= 1 be a nonnegative constant. Suppose that a function f : X → Y

satisfies the inequality

∥

∥f(x+ y)− f(x)− f(y)
∥

∥ 6 ε
(

‖x‖p + ‖y‖p
)

, x, y ∈ X

for some ε > 0. Then there exists a unique additive function A : X → Y such that

∥

∥f(x)−A(x)
∥

∥ 6
2ε

|2− 2p|
‖x‖p, x ∈ X.

This phenomenon is called Hyers-Ulam-Rassias stability. The function A : X → Y

can be explicitly constructed, started from the given function f , by the formulae

A(x) = lim
n→∞

1

2n
f(2nx), p < 1, and A(x) = lim

n→∞

2nf
( x

2n

)

, p > 1.

This method is called the direct method or Hyers’ method. It is often used to construct
a solution of a given functional equation and is a powerful tool for studying the
stability of many functional equations.

The second most often considered equation is the quadratic functional equation.
The Hyers-Ulam stability of this equation was first proved by F. Skof [30] and gener-
alized by P.W. Cholewa [5]. Thereafter, S. Czerwik [8] proved the Hyers-Ulam-Rassias
stability of the quadratic functional equation and his result reads as follows:

Theorem 1.2. Let X and Y be a real normed space and a real Banach space, respec-
tively, and let p 6= 2 be a nonnegative constant. If a function f : X → Y satisfies the
inequality

∥

∥f(x+ y) + f(x− y)− 2f(x)− 2f(y)
∥

∥ 6 ε
(

‖x‖p + ‖y‖p
)

, x, y ∈ X

for some ε > 0, then there exists a unique quadratic function Q : X → Y such that

∥

∥f(x)−Q(x)
∥

∥ 6
2ε

|4− 2p|
‖x‖p, x ∈ X.

The stability problems of several functional equations have been extensively inves-
tigated by many authors. For more information and primary references, the reader
should refer to the monographs [10, 11, 19, 22], and papers, e.g. [9, 15, 20, 28].
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The Hyers’ method is the most popular technique of proving the Hyers-Ulam sta-
bility of functional equations. Nevertheless, there are also known several different
approaches proving the Hyers-Ulam stability, for example the method of invariant
means (see [17, 31]), the method based on sandwich theorems (see [25]) and on the
concept of shadowing (see [32]).

L. Cǎdariu and V. Radu applied the fixed point method to the investigation of
Jensen and Cauchy functional equations (see [3] and [4], respectively). Now it is
the second most popular technique of proving the Hyers-Ulam stability of functional
equations. An extensive source of information on applications of fixed point theorems
to the Hyers-Ulam stability of functional equations is Ciepliński’s survey paper [6].

In this paper, we will apply the fixed point method to prove the Hyers-Ulam-Rassias
stability of the following functional equation

f(x+ 3y) + 3f(x− y) = f(x− 3y) + 3f(x+ y), (1)

which is connected with additive and quadratic mappings. We will consider a class of
functions between a linear space and a complete β-normed space. The above functional
equation is interesting because of its connection with a single variable functional
equation (see [1, 13, 29]) which is also closely associated with additive and quadratic
mappings. It is well known (see [21]) that the general solution of (1) in the class of
functions between real or complex linear spaces is of the form f = Q+ A+ c, where
Q is a quadratic mapping, A is an additive one and c = f(0).

It is worth to notice that the equation (1) is equivalent to the functional equation
∆3

2yf(x−3y) = 0, where ∆ is the difference operator defined by ∆hf(x) = f(x+h)−
f(x) and ∆3 denotes its third iterate. Therefore a solution of the above equation is
a polynomial of degree at most two (see, e.g., [24]).

Standard symbols R, C denote the sets of real and complex numbers, respectively,
and N0 := N ∪ {0}, where N denotes the set of positive integers.

2. Preliminaries

In this section we present some definitions and auxiliary result which will be needed
in the sequel.

Definition 2.1 ([12]). Let X be a nonempty set. A function d : X ×X → [0,∞] is
called a generalized metric on X if and only if d satisfies the following conditions:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Note that the only substantial difference of the generalized metric from the metric
is that the range of generalized metric includes the infinity.

We now introduce one of fundamental results of fixed point theory. For the proof,
refer to [12].
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Theorem 2.2 ([12]). Let (X, d) be a generalized metric space. Assume that Λ : X →
X is a strictly contractive operator with the Lipschitz constant L < 1. Then, for each
given element x ∈ X, either

(a) d(Λn+1x, Λnx) = ∞ for all n ∈ N0,

or

(b) there exists k ∈ N0 such that d(Λn+1x, Λnx) <∞ for all n > k, n ∈ N0.

Actually, if (b) holds and the respective k ∈ N0 is fixed, then

(i) the sequence (Λnx)n∈N0
converges to the fixed point x∗ of Λ,

(ii) x∗ is the unique fixed point of Λ in the space

X∗ :=
{

y ∈ X : d(Λkx, y) <∞
}

,

(iii) if y ∈ X∗, then

d(y, x∗) 6
1

1− L
d(Λy, y).

Remark 2.3. It is known that the fixed point x∗, if it exists, is not necessarily unique
in the whole space X, it may depend on the starting point x. Moreover, in the case (b),
the pair (X∗, d) is a complete metric space and Λ(X∗) ⊂ X∗. Therefore the properties
(i)–(iii) follow from Banach’s Contraction Principle (cf. [23]).

Let E be a vector space over the field K = {R,C}. Moreover, from now, let α ∈
(0,∞) and 0 < β 6 1.

Definition 2.4 (cf. [4]). A mapping ‖ · ‖α : E → [0,∞) is called a sub-homogeneous
functional of order α if and only if

‖λx‖α 6 |λ|α · ‖x‖α, λ ∈ K, x ∈ E. (2)

Similarly, we can formulate the following definition.

Definition 2.5. A mapping ‖·‖α : E → [0,∞) is called a sub-homogeneous functional
of order 2α if and only if

‖λx‖α 6 |λ|2α · ‖x‖α, λ ∈ K, x ∈ E. (3)

Actually, a sub-homogeneous functional of order α (or 2α) is a homogeneous func-
tional of order α (or 2α). Indeed, it suffices to substitute λx and 1

λ
in the place of x

and λ in the above conditions, respectively, to obtain the converse inequalities.
As usually, E is identified with E × {0} in E × E. Hence ‖x‖α = ‖(x, 0)‖α for all

x ∈ E and for each sub-homogeneous functional of order α (or 2α) on E × E.

Definition 2.6 ([4]). A mapping ‖ · ‖β : E → [0,∞) is called a β-norm if and only if
it has the following properties:

(i) ‖x‖β = 0 if and only if x = 0,
(ii) ‖λx‖β = |λ|β · ‖x‖β,
(iii) ‖x+ y‖β 6 ‖x‖β + ‖y‖β

for all λ ∈ K and x, y ∈ E.
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3. Main results

Throughout this section let E1, E2 be two linear spaces over the same field K =
{R,C}. Moreover, assume that E2 is a complete β-normed space for some 0 < β 6 1.
Let us define a number ai, i = 0, 1, by the formula:

ai =

{

2, i = 0,
1
2 , i = 1.

To shorten some considerations and for the sake of brevity we shall use in the
following two theorems the same notations for the case i = 0 and i = 1. We investigate
the stability problem of (1) by decomposing the unknown function f into its even and
odd part. Next, we will connect these two cases receiving the main Theorem 3.3.

Theorem 3.1. Suppose ϕ : E1 × E1 → [0,∞) is a given function and there exists
a constant L, 0 < L < 1, such that the mapping

x→ ψ(x) = ϕ
(x

2
,
x

2

)

, x ∈ E1,

has the property

ψ(x) 6 L · a2βi ψ

(

x

ai

)

, x ∈ E1, i = 0, 1, (4)

and the mapping ϕ satisfies the condition

lim
n→∞

ϕ(ani x, a
n
i y)

a
2nβ
i

= 0, x, y ∈ E1, i = 0, 1. (5)

If an even function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ϕ(x, y), x, y ∈ E1,

then there exists a unique quadratic mapping Q : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6

1

4β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1. (6)

Proof. Let f1(x) := f(x) − f(0) for all x ∈ E1. Then f1(0) = 0 and the function f1
satisfies the inequality

∥

∥f1(x+ 3y) + 3f1(x− y)− f1(x− 3y)− 3f1(x+ y)
∥

∥

β
6 ϕ(x, y), x, y ∈ E1. (7)

Consider the set
X :=

{

h : E1 → E2 : h(0) = 0
}

,

and introduce the generalized metric on X :

d(g, h) := inf
{

C ∈ [0,∞] :
∥

∥g(x)− h(x)
∥

∥

β
6 Cψ(x)

}

, x ∈ E1.
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As usually, inf ∅ := ∞. First, we will verify that (X, d) is a complete space. Let (gn)n∈N

be a Cauchy sequence in (X, d), i.e.

∧

ε>0

∨

N0∈N

∧

m,n>N0

d(gm, gn) 6 ε.

By considering the definition of the generalized metric d, we see that

∧

ε>0

∨

N0∈N

∧

m,n>N0

∧

x∈E1

∥

∥gm(x)− gn(x)
∥

∥

β
6 εψ(x). (8)

For fixed x ∈ E1, condition (8) implies that
(

gn(x)
)

n∈N
is a Cauchy sequence in

(

E2, ‖ ·‖β
)

. Since
(

E2, ‖ ·‖β
)

is complete,
(

gn(x)
)

n∈N
converges in

(

E2, ‖ ·‖β
)

for each
x ∈ E1. Hence we can define a function g : E1 → E2 by

g(x) := lim
n→∞

gn(x), x ∈ E1.

Letting m→ ∞ in (8), we get

∧

ε>0

∨

N0∈N

∧

n>N0

∧

x∈E1

∥

∥g(x)− gn(x)
∥

∥

β
6 εψ(x),

i.e.
∧

ε>0

∨

N0∈N

∧

n>N0

d(g, gn) 6 ε.

This fact leads us to the conclusion that the sequence (gn)n∈N converges in (X, d).
Hence (X, d) is a complete space.

We define an operator Λ : X → X by the formula

(Λh)(x) :=
1

a2i
h(aix), x ∈ E1, i = 0, 1.

We show that Λ is strictly contractive on X . Given g, h ∈ X and let C ∈ [0,∞] be an
arbitrary constant with d(g, h) 6 C, i.e.

∥

∥g(x)− h(x)
∥

∥

β
6 Cψ(x), x ∈ E1, i = 0, 1.

Substituting aix instead of x in the above inequality and dividing both sides of the
resulting expression by a2βi , we get

∥

∥

∥

∥

g(aix)

a2i
−
h(aix)

a2i

∥

∥

∥

∥

β

6
1

a
2β
i

Cψ(aix), x ∈ E1, i = 0, 1.

Therefore in view of (4) and the definition of Λ we see that

∥

∥(Λg)(x)− (Λh)(x)
∥

∥

β
6 LCψ(x), x ∈ E1,

i.e. d(Λg,Λh) 6 LC. Hence we conclude that d(Λg,Λh) 6 Ld(g, h) for any g, h ∈ X .



A fixed point approach to the stability of some functional equation. . . 279

Next, we assert that d(Λf1, f1) < ∞. Consider the case where i = 0. Substituting
x
2 instead of x and y in (7) and dividing both sides of the resulting inequality by 4β ,
we obtain

∥

∥(Λf1)(x) − f1(x)
∥

∥

β
6

1

4β
ψ(x), x ∈ E1,

i.e.

d(Λf1, f1) 6
1

4β
<∞.

Let us now consider the second case where i = 1. Replacing x and y by x
4 in (7) and

applying (4) gives

∥

∥(Λf1)(x)− f1(x)
∥

∥

β
6

1

4β
Lψ(x), x ∈ E1,

i.e.

d(Λf1, f1) 6
1

4β
L <∞.

Therefore we have

d(Λf1, f1) 6
1

4β
Li <∞, i = 0, 1. (9)

By Theorem 2.2 (i) there exists a mapping Q : E1 → E2 with Q(0) = 0, which is
a fixed point of Λ, i.e. (ΛQ)(x) = Q(x) for all x ∈ E1. Hence Q(2x) = 4Q(x) for all
x ∈ E1 and Λnf1 → Q, i.e.

lim
n→∞

1

a2ni
f1(a

n
i x) = Q(x), x ∈ E1, i = 0, 1.

Since k = 0 (see (9)) and f1 ∈ X∗ in Theorem 2.2, by Theorem 2.2 (iii) and (9)
we obtain

d(f1, Q) 6
1

1− L
d(Λf1, f1) 6

1

4β
Li

1− L
,

i.e.
∥

∥f1(x) −Q(x)
∥

∥

β
6

1

4β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1,

which means that the inequality (6) is true.
We verify that a function Q is quadratic. Substituting ani x and ani y instead of x

and y in (7), respectively, and dividing both sides of the resulting inequality by a2nβi ,
we get

∥

∥

∥

∥

∥

f1
(

ani (x+ 3y)
)

a2ni
+

3f1
(

ani (x− y)
)

a2ni
−
f1
(

ani (x− 3y)
)

a2ni
−

3f1
(

ani (x+ y)
)

a2ni

∥

∥

∥

∥

∥

β

6
ϕ(ani x, a

n
i y)

a
2nβ
i

, x, y ∈ E1,

where i = 0, 1. Taking the limit in the above expression as n → ∞ and applying (5)
we conclude that
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Q(x+ 3y) + 3Q(x− y) = Q(x− 3y) + 3Q(x+ y), x, y ∈ E1.

This implies that Q is a quadratic function (since Q is even, cf. [21]).
To prove the uniqueness of the solution assume that there exists another quadratic

function Q1 : E1 → E2 satisfying the condition (6). Therefore Q1(x) =
1
a2

i

Q1(aix) =

(ΛQ1)(x) for all x ∈ E1, i.e. Q1 is a fixed point of Λ. In view of (6) with Q1 and the
definition of d, we know that

∥

∥f1(x)−Q1(x)
∥

∥

β
6

1

4β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1,

i.e.

d(f1, Q1) 6
1

4β
Li

1− L
<∞, i = 0, 1.

Thus Q1 ∈ X∗ =
{

y ∈ X : d(Λf1, y) <∞
}

and Theorem 2.2 (ii) implies that Q = Q1,
which proves the uniqueness of Q. The proof is completed. ⊓⊔

Theorem 3.2. Suppose ϕ : E1 × E1 → [0,∞) is a given function and there exists
a constant L, 0 < L < 1, such that the mapping

x→ ψ(x) = ϕ
(x

2
,
x

2

)

, x ∈ E1

has the property

ψ(x) 6 L · aβi ψ

(

x

ai

)

, x ∈ E1, i = 0, 1, (10)

and the mapping ϕ satisfies the condition

lim
n→∞

ϕ(ani x, a
n
i y)

a
nβ
i

= 0, x, y ∈ E1, i = 0, 1. (11)

If an odd function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ϕ(x, y), x, y ∈ E1, (12)

then there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6

1

2β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1. (13)

Proof. Since a function f is odd then obviously f(0) = 0. Similarly as in the proof
of Theorem 3.1 we define the set X and the generalized metric d. Then (X, d) is
a complete space.

We define an operator Λ : X → X by the formula

(Λh)(x) :=
1

ai
h(aix), x ∈ E1, i = 0, 1.
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We assert that Λ is strictly contractive on X . For given g, h ∈ X , let C ∈ [0,∞] be
an arbitrary constant such that d(g, h) 6 C, i.e.

∥

∥g(x)− h(x)
∥

∥

β
6 Cψ(x), x ∈ E1.

Substituting aix instead of x in the above inequality and dividing both sides of the
resulting expression by aβi , we obtain

∥

∥

∥

∥

g(aix)

ai
−
h(aix)

ai

∥

∥

∥

∥

β

6
1

a
β
i

Cψ(aix), x ∈ E1, i = 0, 1.

Therefore in view of (10) and the definition of Λ we see that

∥

∥(Λg)(x)− (Λh)(x)
∥

∥

β
6 LCψ(x), x ∈ E1,

i.e. d(Λg,Λh) 6 LC. Thus d(Λg,Λh) 6 Ld(g, h) for any g, h ∈ X .
We show that d(Λf, f) <∞. Consider the case where i = 0. Substituting x

2 instead
of x and y in (12) and dividing both sides of the resulting inequality by 2β, we obtain

∥

∥(Λf)(x) − f(x)
∥

∥

β
6

1

2β
ψ(x), x ∈ E1,

i.e.

d(Λf, f) 6
1

2β
<∞.

Let us now consider the second case where i = 1. Replacing x and y by x
4 in (12) and

applying (10) gives

∥

∥(Λf)(x)− f(x)
∥

∥

β
6

1

2β
Lψ(x), x ∈ E1,

i.e.

d(Λf, f) 6
1

2β
L <∞.

Therefore we have

d(Λf, f) 6
1

2β
Li <∞, i = 0, 1. (14)

Then, it follows from Theorem 2.2 (i) that there exists a function A : E1 → E2

with A(0) = 0, which is a fixed point of Λ, i.e. (ΛA)(x) = A(x) for all x ∈ E1. Thus
A(2x) = 2A(x) for all x ∈ E1 and Λnf → A, i.e.

lim
n→∞

1

ani
f(ani x) = A(x), x ∈ E1, i = 0, 1.

Since k = 0 (see (14)) and f ∈ X∗ in Theorem 2.2, by Theorem 2.2 (iii) and (14)
we obtain

d(f,A) 6
1

1− L
d(Λf, f) 6

1

2β
Li

1− L
,

i.e.
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∥

∥f(x)− A(x)
∥

∥

β
6

1

2β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1,

which means that the inequality (13) holds true.
We show that a function A is additive. Substituting ani x i ani y instead of x and y

in (12), respectively, and dividing both sides of the resulting inequality by anβi , we
get

∥

∥

∥

∥

∥

f
(

ani (x+ 3y)
)

ani
+

3f
(

ani (x− y)
)

ani
−
f
(

ani (x− 3y)
)

ani
−

3f
(

ani (x+ y)
)

ani

∥

∥

∥

∥

∥

β

6
ϕ(ani x, a

n
i y)

a
nβ
i

, x, y ∈ E1,

where i = 0, 1. Letting n→ ∞ in the above inequality and applying (11) we have

A(x + 3y) + 3A(x− y) = A(x − 3y) + 3A(x+ y), x, y ∈ E1.

This implies that A is a additive function (since A is odd, cf. [21]).
Assume that inequality (13) is also satisfied with another additive function

A1 : E1 → E2 besides A. Therefore A1(x) =
1
ai
A1(aix) = (ΛA1)(x) for all x ∈ E1, i.e.

A1 is a fixed point of Λ. In view of (13) with Q1 and the definition of d, we know that

∥

∥f(x)−A1(x)
∥

∥

β
6

1

2β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1,

i.e.

d(f,A1) 6
1

2β
Li

1− L
<∞, i = 0, 1.

Thus A1 ∈ X∗ =
{

y ∈ X : d(Λf, y) <∞
}

and Theorem 2.2 (ii) implies that A = A1,
which proves the uniqueness of A. This completes the proof. ⊓⊔

Theorem 3.3. Suppose ϕ : E1 × E1 → [0,∞) is a given function and there exists
a constant L, 0 < L < 1, such that the mapping

x→ ψ(x) = ϕ
(x

2
,
x

2

)

, x ∈ E1

has the properties:

ψ(x) 6 L · a2
iβ

i ψ

(

x

ai

)

, x ∈ E1, i = 0, 1,

and the mapping ϕ satisfies the conditions

lim
n→∞

ϕ(ani x, a
n
i y)

a
2inβ
i

= 0, x, y ∈ E1, i = 0, 1.

If a function f : E1 → E2 satisfies the inequality
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∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ϕ(x, y), x, y ∈ E1, (15)

then there exist a unique quadratic mapping Q : E1 → E2 and a unique additive
mapping A : E1 → E2 such that

∥

∥f(x)−f(0)−Q(x)−A(x)
∥

∥

β
6

2β + 1

8β
Li

1− L

[

ψ(x)+ψ(−x)
]

, x ∈ E1, i = 0, 1. (16)

Proof. We define functions f1, f2 : E1 → E2 by

f1(x) :=
f(x) + f(−x)

2
, f2(x) :=

f(x)− f(−x)

2
, x ∈ E1.

Then f = f1 + f2. Since a function f safisfies the condition (15), so the following
inequalities hold true

∥

∥f1(x+ 3y) + 3f1(x− y)− f1(x− 3y)− 3f1(x+ y)
∥

∥

β
6

1

2β
[

ϕ(x, y) + ϕ(−x,−y)
]

,

∥

∥f2(x+ 3y) + 3f2(x− y)− f2(x− 3y)− 3f2(x+ y)
∥

∥

β
6

1

2β
[

ϕ(x, y) + ϕ(−x,−y)
]

for all x, y ∈ E1. It follows from Theorems 3.1 and 3.2 that there exist a unique
quadratic function Q : E1 → E2 and aunique additive function A : E1 → E2 such that

∥

∥f1(x) − f1(0)−Q(x)
∥

∥

β
6

1

8β
Li

1− L

[

ψ(x) + ψ(−x)
]

,

∥

∥f2(x) −A(x)
∥

∥

β
6

1

4β
Li

1− L

[

ψ(x) + ψ(−x)
]

for all x ∈ E1, i = 0, 1, respectively. From the above inequalities we easily obtain the
condition (16). ⊓⊔

Corollary 3.4. Suppose that we have given a sub-homogeneous functional of order
2α on E1 × E1, α 6= β. Then for each ε > 0 there exists δ(ε) > 0 such that for every
even function f : E1 → E2 which satisfies

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 δ(ε) ·

∥

∥(x, y)
∥

∥

α
, x, y ∈ E1,

there exists a unique quadratic mapping Q : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6 ε ·

∥

∥(x, x)
∥

∥

α
, x ∈ E1. (17)

Proof. Define
ϕ(x, y) := δ(ε) ·

∥

∥(x, y)
∥

∥

α
, x, y ∈ E1.

For a0 = 2 and α− β < 0 we have

ϕ(ani x, a
n
i y)

a
2nβ
i

=
δ(ε)

a
2nβ
i

·
∥

∥(ani x, a
n
i y)
∥

∥

α
6 δ(ε) ·a

2n(α−β)
i ·

∥

∥(x, y)
∥

∥

α
−−−−→
n→∞

0, x, y ∈ E1.
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We obtain the same condition for a1 = 1
2 and α− β > 0. Hence (5) is true.

Moreover, for a0 = 2 and α− β < 0 we get

ψ(x) = ϕ
(x

2
,
x

2

)

= δ(ε) ·
∥

∥

∥

(x

2
,
x

2

)∥

∥

∥

α
= δ(ε) ·

∥

∥

∥

(

2 ·
x

4
, 2 ·

x

4

)∥

∥

∥

α
6

6 4α · δ(ε) ·
∥

∥

∥

(x

4
,
x

4

)
∥

∥

∥

α
= 4α · ϕ

(x

4
,
x

4

)

=

= 4α · ψ
(x

2

)

= L · 4β · ψ
(x

2

)

, x ∈ E1,

where L = 4α−β < 1.
For a1 = 1

2 and α− β > 0 we have

ψ(x) = ϕ
(x

2
,
x

2

)

= δ(ε) ·
∥

∥

∥

(x

2
,
x

2

)∥

∥

∥

α
6

1

4α
· δ(ε) ·

∥

∥(x, x)
∥

∥

α
=

=
1

4α
· ϕ(x, x) = L ·

1

4β
· ψ(2x), x ∈ E1,

where L = 4β−α < 1.
Therefore the inequality (4) is satisfied. So, in view of Theorem 3.1 there exists

a unique quadratic mapping Q : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6

1

4β
1

1− L
ψ(x), x ∈ E1

holds, with L = 4α−β , or

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6

1

4β
L

1− L
ψ(x), x ∈ E1

holds, with L = 4β−α.
Thus, the inequality (17) holds true for δ(ε) = ε ·4α(4β−4α) and δ(ε) = ε ·4α(4α−

4β), respectively. ⊓⊔

Corollary 3.5. Suppose that we have given a sub-homogeneous functional of order
α on E1 × E1, α 6= β. Then for each ε > 0 there exists δ(ε) > 0 such that for every
odd function f : E1 → E2 which satisfies

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 δ(ε) ·

∥

∥(x, y)
∥

∥

α
, x, y ∈ E1,

there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6 ε ·

∥

∥(x, x)
∥

∥

α
, x ∈ E1. (18)

Proof. Define
ϕ(x, y) := δ(ε) ·

∥

∥(x, y)
∥

∥

α
, x, y ∈ E1.

For a0 = 2 and α− β < 0 we have

ϕ(ani x, a
n
i y)

a
nβ
i

=
δ(ε)

a
nβ
i

·
∥

∥(ani x, a
n
i y)
∥

∥

α
6 δ(ε) · a

n(α−β)
i ·

∥

∥(x, y)
∥

∥

α
−−−−→
n→∞

0, x, y ∈ E1.
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We obtain the same condition for a1 = 1
2 and α− β > 0. Hence (11) is true.

Moreover, for a0 = 2 and α− β < 0 we get

ψ(x) = ϕ
(x

2
,
x

2

)

= δ(ε) ·
∥

∥

∥

(x

2
,
x

2

)∥

∥

∥

α
= δ(ε) ·

∥

∥

∥

(

2 ·
x

4
, 2 ·

x

4

)∥

∥

∥

α
6

6 2α · δ(ε) ·
∥

∥

∥

(x

4
,
x

4

)
∥

∥

∥

α
= 2α · ϕ

(x

4
,
x

4

)

=

= 2α · ψ
(x

2

)

= L · 2β · ψ
(x

2

)

, x ∈ E1,

where L = 2α−β < 1.
For a1 = 1

2 and α− β > 0 we have

ψ(x) = ϕ
(x

2
,
x

2

)

= δ(ε) ·
∥

∥

∥

(x

2
,
x

2

)∥

∥

∥

α
6

1

2α
· δ(ε) ·

∥

∥(x, x)
∥

∥

α
=

=
1

2α
· ϕ(x, x) = L ·

1

2β
· ψ(2x), x ∈ E1,

where L = 2β−α < 1.
Therefore the inequality (10) is satisfied. So, in view of Theorem 3.2 there exists

a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6

1

2β
1

1− L
ψ(x), x ∈ E1

holds, with L = 2α−β , or

∥

∥f(x)−A(x)
∥

∥

β
6

1

2β
L

1− L
ψ(x), x ∈ E1,

holds, with L = 2β−α.
Thus, the inequality (18) holds true for δ(ε) = ε ·2α(2β−2α) and δ(ε) = ε ·2α(2α−

2β), respectively. ⊓⊔

Corollary 3.6. Let E1 be a normed space over K. Let us fix p ∈ (0, 2), p
2 < β 6 1

in the case i = 0, and p ∈ (2,∞), 0 < β 6 1 in the case i = 1. If an even function
f : E1 → E2 satisfies the inequality

∥

∥f(x+3y)+3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε
(

‖x‖p+ ‖y‖p
)

, x, y ∈ E1 (19)

and ε > 0, then there exists a unique quadratic mapping Q : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6

2ε

2p · |4β − 2p|
‖x‖p, x ∈ E1. (20)

Proof. Without loss of generality we can assume that f(0) = 0. Define ϕ(x, y) :=

ε
(

‖x‖p + ‖y‖p
)

for all x, y ∈ E1. Moreover, let L := Li =
a
p

i

a
2β

i

, where i = 0 when

p < 2β, and i = 1 when p > 2β. Hence 0 < L < 1 and
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ψ(x) = ϕ
(x

2
,
x

2

)

= 2ε
∥

∥

∥

x

2

∥

∥

∥

p

= 2ε

∥

∥

∥

∥

ai ·
x

2ai

∥

∥

∥

∥

p

= 2εapi

∥

∥

∥

∥

x

2ai

∥

∥

∥

∥

p

=

= a
p
iϕ

(

x

2ai
,
x

2ai

)

= a
p
iψ

(

x

ai

)

= L · a2βi ψ

(

x

ai

)

, x ∈ E1.

Furthermore,

ϕ(ani x, a
n
i y)

a
2nβ
i

=
ε
(

‖ani x‖
p + ‖ani y‖

p
)

a
2nβ
i

=
ε · anpi

(

‖x‖p + ‖y‖p
)

a
2nβ
i

=

=

(

a
p
i

a
2β
i

)n

· ε
(

‖x‖p + ‖y‖p
)

= Ln · ε
(

‖x‖p + ‖y‖p
)

−−−−→
n→∞

0, x, y ∈ E1.

Therefore, in view of Theorem 3.1 there exists a unique quadratic mapping
Q : E1 → E2 which satisfies (20). The proof is completed. ⊓⊔

Corollary 3.7. Let E1 be a normed space over K. Let us fix p ∈ (0, 1), p < β 6 1
in the case i = 0, and p ∈ (1,∞), 0 < β 6 1 in the case i = 1. If an odd function
f : E1 → E2 satisfies the inequality

∥

∥f(x+3y)+3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε
(

‖x‖p+ ‖y‖p
)

, x, y ∈ E1 (21)

and ε > 0, then there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)− A(x)
∥

∥

β
6

2ε

2p · |2β − 2p|
‖x‖p, x ∈ E1. (22)

Proof. Clearly, f(0) = 0. Define ϕ(x, y) := ε
(

‖x‖p+‖y‖p
)

for all x, y ∈ E1. Moreover,

let L := Li =
a
p

i

a
β

i

, where i = 0 when p < β, and i = 1 when p > β. Hence 0 < L < 1

and

ψ(x) = ϕ
(x

2
,
x

2

)

= 2ε
∥

∥

∥

x

2

∥

∥

∥

p

= 2ε

∥

∥

∥

∥

ai ·
x

2ai

∥

∥

∥

∥

p

= 2εapi

∥

∥

∥

∥

x

2ai

∥

∥

∥

∥

p

=

= a
p
iϕ

(

x

2ai
,
x

2ai

)

= a
p
iψ

(

x

ai

)

= L · aβi ψ

(

x

ai

)

, x ∈ E1.

Furthermore,

ϕ(ani x, a
n
i y)

a
nβ
i

=
ε
(

‖ani x‖
p + ‖ani y‖

p
)

a
nβ
i

=
ε · anpi

(

‖x‖p + ‖y‖p
)

a
nβ
i

=

=

(

a
p
i

a
β
i

)n

· ε
(

‖x‖p + ‖y‖p
)

= Ln · ε
(

‖x‖p + ‖y‖p
)

−−−−→
n→∞

0, x, y ∈ E1.

Therefore, in view of Theorem 3.2 there exists a unique additive mapping A : E1 →
E2 which satisfies (22). This completes the proof. ⊓⊔

Corollary 3.8. Let E1 be a normed space over K. Let p 6= 1, p 6= 2 and let us fix
β > p with p ∈ (0, 1), β > p

2 with p ∈ (1, 2) and β > 0 with p ∈ (2,∞), respectively.
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If a function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε
(

‖x‖p + ‖y‖p
)

, x, y ∈ E1

and ε > 0, then there exist a unique quadratic mapping Q : E1 → E2 and a unique
additive mapping A : E1 → E2 such that

∥

∥f(x)−f(0)−Q(x)−A(x)
∥

∥

β
6

4ε

2p+β

(

1

|4β − 2p|
+

1

|2β − 2p|

)

‖x‖p, x ∈ E1. (23)

Proof. Similarly as in the proof of Theorem 3.3 one can obtain the inequality (23). ⊓⊔

In the following two corollaries, we deal with the inequalities (19) and (21) for the
case p = 0. We need only to set L = 1

4β
and L = 1

2β
and apply Theorems 3.1 and 3.2

for their proofs, respectively. It is worth to note that the above constants L are the
smallest ones satisfying conditions (4) and (10), respectively.

Corollary 3.9. If an even function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε, x, y ∈ E1

for some ε > 0, then there exists a unique quadratic mapping Q : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)
∥

∥

β
6

ε

4β − 1
, x ∈ E1.

Corollary 3.10. If an odd function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε, x, y ∈ E1

for some ε > 0, then there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6

ε

2β − 1
, x ∈ E1. (24)

Corollary 3.11. If a function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε, x, y ∈ E1

for some ε > 0, then there exist a unique quadratic mapping Q : E1 → E2 and a unique
additive mapping A : E1 → E2 such that

∥

∥f(x)− f(0)−Q(x)−A(x)
∥

∥

β
6

22−β + 2

4β − 1
ε, x ∈ E1.

It is worth noticing that we can prove Theorem 3.2 with another definition of the
number ai. Namely, let us define a number ai, i = 0, 1, by the formula:

ai =

{

3, i = 0,
1
3 , i = 1.
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Theorem 3.12. Suppose ϕ : E1 × E1 → [0,∞) is a given function and there exists
a constant L, 0 < L < 1, such that the mapping

x→ ψ(x) = ϕ(0, x), x ∈ E1

has the property

ψ(x) 6 L · aβi ψ

(

x

ai

)

, x ∈ E1, i = 0, 1,

and the mapping ϕ satisfies the condition

lim
n→∞

ϕ(ani x, a
n
i y)

a
nβ
i

= 0, x, y ∈ E1, i = 0, 1.

If an odd function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ϕ(x, y), x, y ∈ E1,

then there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6

1

6β
Li

1− L
ψ(x), x ∈ E1, i = 0, 1.

Corollary 3.13. If an odd function f : E1 → E2 satisfies the inequality

∥

∥f(x+ 3y) + 3f(x− y)− f(x− 3y)− 3f(x+ y)
∥

∥

β
6 ε, x, y ∈ E1

for some ε > 0, then there exists a unique additive mapping A : E1 → E2 such that

∥

∥f(x)−A(x)
∥

∥

β
6

ε

6β − 2β
, x ∈ E1.

It can be easily checked that the above approximation constant is better than that
one obtained in (24).

Recently, B. Przebieracz [26] presented an application of the Markov-Kakutani
common fixed point theorem to the theory of stability of functional equations by
proving some version of the Hyers theorem concerning approximate homomorphisms.
It seems to be interesting to consider applications of another fixed point theorems to
the theory of the Hyers-Ulam stability of functional equations (see, e.g., fixed point
theorems investigated in [7]).
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6. Ciepliński K.: Applications of fixed point theorems to the Hyers-Ulam stability of functional

equations – a survey. Ann. Funct. Anal. 3 (2012), 151–164.
7. Czerwik S.: Fixed Point Theorems and Special Solutions of Functional Equations. Prace Nauk.
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